- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Pal, Ambar (2)
-
Vidal, Rene (2)
-
Ramchandran, Muthukumar (1)
-
Sulam, Jeremias (1)
-
Sulam, Jeremias Sulam (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
Globerson, A (1)
-
Hardt, M (1)
-
Levine, S (1)
-
Naumann, T (1)
-
Oh, A (1)
-
Saenko, K (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 11, 2026
-
Pal, Ambar; Sulam, Jeremias; Vidal, Rene (, NeurIPS)Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)The susceptibility of modern machine learning classifiers to adversarial examples has motivated theoretical results suggesting that these might be unavoidable. However, these results can be too general to be applicable to natural data distributions. Indeed, humans are quite robust for tasks involving vision. This apparent conflict motivates a deeper dive into the question: Are adversarial examples truly unavoidable? In this work, we theoretically demonstrate that a key property of the data distribution – concentration on small-volume subsets of the input space – determines whether a robust classifier exists. We further demonstrate that, for a data distribution concentrated on a union of low-dimensional linear subspaces, utilizing structure in data naturally leads to classifiers that enjoy data-dependent polyhedral robustness guarantees, improving upon methods for provable certification in certain regimes.more » « less
An official website of the United States government

Full Text Available